
REXX AND FLYWAY
AUTOMATING Z/OS DB2 CHANGES WITH

René Vincent Jansen

28th International Rexx Language Symposium, April 2017

GIT
JENKINS
FLYWAY

The Open Source
Deployment Pipeline

	 	 Oracle

	 	 SQL Server

	 	 SQL Azure

	 	 DB2

	 	 DB2 z/OS

	 	 MySQL

	 	 MariaDB

	 	 PostgreSQL

	 	 Redshift

	 	 Vertica

	 	 EnterpriseDB

	 	 H2

	 	 Hsql

	 	 Derby

	 	 SQLite

	 	 SAP HANA

	 	 solidDB

	 	 Sybase ASE

	 	 Phoenix

https://flywaydb.org/documentation/database/oracle
https://flywaydb.org/documentation/database/sqlserver
https://flywaydb.org/documentation/database/sqlazure
https://flywaydb.org/documentation/database/db2
https://flywaydb.org/documentation/database/db2zos
https://flywaydb.org/documentation/database/mysql
https://flywaydb.org/documentation/database/mariadb
https://flywaydb.org/documentation/database/postgresql
https://flywaydb.org/documentation/database/redshift
https://flywaydb.org/documentation/database/vertica
https://flywaydb.org/documentation/database/enterprisedb
https://flywaydb.org/documentation/database/h2
https://flywaydb.org/documentation/database/hsql
https://flywaydb.org/documentation/database/derby
https://flywaydb.org/documentation/database/sqlite
https://flywaydb.org/documentation/database/saphana
https://flywaydb.org/documentation/database/solid
https://flywaydb.org/documentation/database/sybaseAse
https://flywaydb.org/documentation/database/phoenix

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

AGENDA

▸ The deployment pipeline

▸ Version management for DB2 objects

▸ Using Flyway on the command line

▸ Automating the process with NetRexx

▸ Using SQL based conversions

▸ Using Java based conversions

▸ Using DB2 z/OS Utilities

THE DEPLOYMENT
PIPELINE

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

THE DEPLOYMENT PIPELINE

VERSION MANAGEMENT
FOR DB2 OBJECTS

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

THE PROBLEM WITH DATABASES

▸ The problem with databases is that there is DATA in them

▸ In Dev, Test and Acc you can skirt this problem

▸ But in PROD you better keep the data and don’t lose it

▸ If the table structure changes, you need to either:

▸ alter and reorg

▸ unload, drop, define, reload, put back auth and FK’s

▸ a copy table, an “insert into … from select” and a copy back

▸ the crossloader, that finally can handle most trouble

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

HOW DOES IT WORK
The easiest scenario is when you point Flyway to an empty database.

It will try to locate its metadata table. As the database is empty, Flyway won't find it and will create it instead.

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

WELL, NOT ALWAYS

▸ At this site, one may not use BP0 (only for DB2 catalog)

▸ BP0 (Buffer Pool Zero) is hardcoded in the definition

▸ No worries, we define it ourselves

▸ You cannot do this with flyway until you have modified
flyway - this pays off the moment you have to do more
databases, so invest in this small modification

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

CREATE TABLESPACE SET CURRENT SQLID="JANSR16";

CREATE TABLESPACE SFLYWAY
 IN JANSR16
 USING STOGROUP SGDB0O
 PRIQTY -1 SECQTY -1
 ERASE NO
 FREEPAGE 0 PCTFREE 10
 GBPCACHE CHANGED
 TRACKMOD NO
 MAXPARTITIONS 4
 LOGGED
 DSSIZE 4 G
 SEGSIZE 32
 BUFFERPOOL BP1
 LOCKSIZE ANY
 LOCKMAX 0
 CLOSE YES
 COMPRESS YES
 CCSID UNICODE
 DEFINE YES
 MAXROWS 255;

Flyway will create this
table when it does not
find it. You only have to
do this, once for every
schema, if automatic
creation fails

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

CREATE TABLE CREATE TABLE schema_version (
 "installed_rank" INT NOT NULL,
 "version" VARCHAR(50),
 "description" VARCHAR(200) NOT NULL,
 "type" VARCHAR(20) NOT NULL,
 "script" VARCHAR(1000) NOT NULL,
 "checksum" INT,
 "installed_by" VARCHAR(100) NOT NULL,
 "installed_on" TIMESTAMP NOT NULL WITH DEFAULT,
 "execution_time" INT NOT NULL,
 "success" SMALLINT NOT NULL
)
IN JANSR16.SFLYWAY;

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

YOU CAN ALSO ADAPT FLYWAY TO YOUR (CUSTOMERS) SITE

▸ It is open source

▸ Git clone it from

▸ git clone https://github.com/flyway/flyway.git

▸ Build it with Maven (will download the internet first time)

▸ This definition file (for DB2 z/OS) is in the jar at:

▸ org/flywaydb/core/internal/dbsupport/db2zos/
createMetaDataTable.sql

▸ I was lazy/efficient and just used zip to add the mod to the jar

https://github.com/flyway/flyway.git

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

HOW DOES IT WORK (WITH SCHEMA_VERSION DEFINED)

You now have a database with a single empty table called SCHEMA_VERSION by default:

This table will be used to track the state of the database.

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

HOW DOES IT WORK
Immediately afterwards Flyway will begin scanning the filesystem or the classpath of the application for
migrations. They can be written in either Sql or Java.

The migrations are then sorted based on their version number and applied in order:

As each migration gets applied, the metadata table is updated accordingly:

installed_rank version description type script checksum installed_by installed_on execution_time success

1 1 Initial Setup SQL V1__Initial_Setup.sql 1996767037 axel 2016-02-04 22:23:00.0 546 TRUE

2 2 First Changes SQL V2__First_Changes.sql 1279644856 axel 2016-02-06 09:18:00.0 127 TRUE

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

THE NAMING SCHEME

▸ Out of the box, Flyways uses the convention

▸ V1.0__TableDefinition.sql

▸ V1.1__Add_index.sql

▸ V1.2__Drop_Recreate_and_Reload.sql

▸ V1.n__etcetera_ad_infinitum

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

V1.0__TABLE_DEFINITION.SQL
SET	CURRENT	SQLID='JANSR16';

CREATE	TABLESPACE	JANTST		
		IN	JANSR16																
		USING	STOGROUP	SGDB0O						
		PRIQTY	-1	SECQTY	-1								
		ERASE		NO																		
		FREEPAGE	0	PCTFREE	10						
		GBPCACHE	CHANGED											
		TRACKMOD	NO																
		MAXPARTITIONS	4												
		LOGGED																					
		DSSIZE	4	G																	
		SEGSIZE	32																	
		BUFFERPOOL	BP1													
		LOCKSIZE	ANY															
		LOCKMAX	0																		
		CLOSE	YES																		
		COMPRESS	YES															
		CCSID						UNICODE									
		DEFINE	YES																	
		MAXROWS	255;

CREATE	TABLE	TSTFLYWAY																											
					(ID																			BIGINT	NOT	NULL,																		
						AUTHORIZED											VARCHAR(255)	FOR	MIXED	DATA							
								WITH	DEFAULT	NULL,																																			
						DISABLED													VARCHAR(255)	FOR	MIXED	DATA							
								WITH	DEFAULT	NULL,																																			
						ELEMENT														VARCHAR(255)	FOR	MIXED	DATA							
								WITH	DEFAULT	NULL,																																			
						ENTEREDAT												TIMESTAMP	(6)	WITHOUT	TIME	ZONE			
								WITH	DEFAULT	NULL,																																			
						FORPROFILE_ID								BIGINT	WITH	DEFAULT	NULL,									
						FORUSER_ID											BIGINT	WITH	DEFAULT	NULL,									
						FUNCTIONALITY								VARCHAR(255)	FOR	MIXED	DATA							
								WITH	DEFAULT	NULL,																																			
						LASTMODIFIEDAT							TIMESTAMP	(6)	WITHOUT	TIME	ZONE			
								WITH	DEFAULT	NULL,																																			
						NAME																	VARCHAR(255)	FOR	MIXED	DATA							
								WITH	DEFAULT	NULL,																																					
								TARGET															VARCHAR(255)	FOR	MIXED	DATA			
								WITH	DEFAULT	NULL,																															
						CONSTRAINT	DATAACCESS_PK																											
						PRIMARY	KEY	(ID))																																		
				IN	JANSR16.JANTST																																		
				PARTITION	BY	SIZE																																				
				AUDIT	NONE																																											
				DATA	CAPTURE	CHANGES																																	
				CCSID						UNICODE																																			
				NOT	VOLATILE																																									
				APPEND	NO		;																																																								

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

V1.1__ADD_INDEX.SQL

SET	CURRENT	SQLID='JANSR16';

											
		CREATE	UNIQUE	INDEX	X1TSTFLW		
		ON	TSTFLYWAY									
			(ID																				ASC)
		USING	STOGROUP	SGDB0O							
		PRIQTY	-1	SECQTY	-1									
		ERASE		NO																			
		FREEPAGE	0	PCTFREE	10							
		GBPCACHE	CHANGED													
		CLUSTER																					
		COMPRESS	NO																	
		INCLUDE	NULL	KEYS											
		BUFFERPOOL	BP2														
		CLOSE	YES																			
		COPY	NO																					
		DEFER	NO																				
		DEFINE	YES																		
		PIECESIZE	2	G;																							
		

Forgot the Primary Key index,
you won’t get that for free on
z/OS DB2

So there we have our first
update/migration

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

AUTO-MIGRATION ON STARTUP

▸ It is possible (and recommended) to have your application
check at startup if it speaks to the right database level

▸ There is an API for that

▸ More about that later

USING FLYWAY ON
THE COMMAND LINE

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

THE MIGRATE COMMAND
$ flyway migrate

Example 1: We have migrations available up to version 9, and the database is at version 5.
Migrate will apply the migrations 6, 7, 8 and 9 in order.

Example 2: We have migrations available up to version 9, and the database is at version 9.
Migrate does nothing.

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

WHERE IT FINDS WHAT - FOR COMMAND LINE USAGE

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

PARAMETERS

▸ In the mainframe world, a DB2 subsystems contains numerous
databases

▸ Generally, naming conventions are used to separate concerns: for
database, stogroup, buffer pools, and authorisations

▸ Also, different DTAP environments have different dimensioning:
PRIQTY, SEQTY, LOCKSIZE, LOCKMAX

▸ BUT you want to keep one copy of DDL, DCL, DML in version
management

▸ yes, you do.

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

PARAMETERS

▸ The solution is a set of substitutable parameters

▸ Flyway supports these

▸ They can be specified on the command line

▸ Standard convention is ${parm} but configurable using API

▸ for example <parm> works fine

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

CLEAN

▸ $ flyway clean

▸ cleans out the schema (drops everything)

▸ good for development

▸ scary for other environments

▸ Limited usefulness: does not work when dropping a table in an
explicitly defined tablespace with

-669 THE OBJECT CANNOT BE EXPLICITLY
DROPPED. REASON 001

AUTOMATING THE
PROCESS WITH NETREXX

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

WHY DO THIS

▸ have a look at the Flyway script and ask yourself if this is going to work on
all shells that you are using (think of USS with ksh or tcsh in EBCDIC)

▸ The answer is probably: Nah

▸ Also, the script counts on a specific layout for the directory structure

▸ Instead of layout, .conf file, jars lookup, just one nrx script

▸ Why NetRexx: Flyway is a Java Jar. All methods can be seamlessly called
by NetRexx

▸ We are using NetRexx scripting mode: no need to use the compiler

▸ You can use the generated Java for the customer

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

THIS IS ALL YOU NEED
import org.flywaydb.core.Flyway

fw = Flyway()
fw.setDataSource("jdbc:db2:xxxxxxx/LOCDB0O","xxxxxx","xxxxxx", null)
fw.setTable("SCHEMA_VERSION")
fw.setBaselineOnMigrate(1)
fw.migrate()

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

OOREXX

fw = .bsf~new("org.flywaydb.core.Flyway")
fw~setDataSource("jdbc:db2:xxxxxxx/LOCDB0O","xxxxxx","xxxxxx", .nil)
fw~setTable("SCHEMA_VERSION")
fw~setBaselineOnMigrate(1)
fw~migrate

::requires "BSF.CLS"

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

WHEN USING PARAMETERS - PUT THEM IN A MAP AND TELL FLYWAY

import org.flywaydb.core.Flyway

parms = TreeMap()
parms.put(String "SQLID", String "JANSR16")
parms.put(String "DB2DBNAME", String "JANSR16")
parms.put(String "DB2TSSTOGROUP", String "SGDB0O")

fw = Flyway()
fw.setDataSource("jdbc:db2:xxxxxxx/LOCDB0O","xxxxxx","xxxxxx", null)
fw.setTable("SCHEMA_VERSION")
fw.setBaselineOnMigrate(1)

fw.setPlaceholderPrefix('<')
fw.setPlaceholderSuffix('>')
fw.setPlaceHolders(parms)

fw.migrate()

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

OOREXX

parms = .bsf~new("java.util.TreeMap")
parms~put("SQLID", "JANSR16")
parms~put("DB2DBNAME", "JANSR16")
parms~put("DB2TSSTOGROUP", "SGDB0O")

fw = .bsf~new("org.flywaydb.core.Flyway")
fw~setDataSource("jdbc:db2:xxxxxxx/LOCDB0O","xxxxxx","xxxxxx", .nil)
fw~setTable("SCHEMA_VERSION")
fw~setBaselineOnMigrate(1)

fw~setPlaceholderPrefix('<')
fw~setPlaceholderSuffix('>')
fw~setPlaceHolders(parms)

fw~migrate

::requires "BSF.CLS"

CONVERSIONS:
SQL BASED

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

SQL BASED CONVERSIONS

▸ The simplest way, and lots of people do it always like this, is to
make a copy or rename the old table and insert the data back
into the newly defined new table; then drop the old one

▸ If you cannot switch off logging this is not a good idea for
those very large tables

▸ Also, you can alter tables, add or delete (novelty for DB2 V11)
columns - but your tablespace enters Advisory Reorg status

▸ But an SQL-based conversion looks like this:

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

SQL BASED CONVERSION
SET CURRENT SQLID = '<schema>';

CREATE TABLESPACE SFLYWAY
 IN "<schema>"
 SEGSIZE 4
 BUFFERPOOL BP0
 LOCKSIZE PAGE
 LOCKMAX SYSTEM
 CLOSE YES
 COMPRESS YES
 ;

CREATE TABLE "<schema>"."TMP_<table>" (
 "installed_rank" INT NOT NULL,
 "version" VARCHAR(50),
 "description" VARCHAR(200) NOT NULL,
 "type" VARCHAR(20) NOT NULL,
 "script" VARCHAR(1000) NOT NULL,
 "checksum" INT,
 "installed_by" VARCHAR(100) NOT NULL,
 "installed_on" TIMESTAMP NOT NULL WITH DEFAULT,
 "execution_time" INT NOT NULL,
 "success" SMALLINT NOT NULL,
 CONSTRAINT "<table>_S" CHECK ("success" in(0,1))
)
IN "<schema>".SFLYWAY;

INSERT INTO "<schema>"."TMP_<table>"(
SELECT
 "installed_rank",
 "version",
 "description",
 "type",
 "script",
 "checksum",
 "installed_by",
 "installed_on",
 "execution_time",
 "success"
FROM "<schema>"."<table>");

--drop old tablespace
DROP TABLESPACE "<schema>".SDBVERS;

RENAME TABLE "<schema>"."TMP_<table>" TO
"<table>";

UPDATE "<schema>"."<table>" SET
"type"='BASELINE' WHERE "type"='INIT';

CREATE UNIQUE INDEX
"<schema>"."<table>_IR_IDX" ON
"<schema>"."<table>" ("installed_rank");
ALTER TABLE "<schema>"."<table>" ADD
CONSTRAINT "<table>_PK" PRIMARY KEY
("installed_rank");

CREATE INDEX "<schema>"."<table>_S_IDX"
ON "<schema>"."<table>" ("success");

CONVERSIONS:
JAVA BASED

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

JAVA BASED CONVERSIONS

▸ Mostly used for BLOB or CLOB handling, Java based
conversions give more freedom over the workflow

▸ You can open and close cursors, read and write files, insert
(and validate) XML columns from files

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

LOCATION AND DISCOVERY

Naming
In order to be picked up, the Java Migrations must implement JdbcMigration.

A Java Migration automatically

	 •	 wraps the migration in a transaction

	 •	 extracts the version and the description from the class name

Repeatable Migrations are always run

https://flywaydb.org/documentation/api/javadoc/org/flywaydb/core/api/migration/jdbc/JdbcMigration

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

YOU CAN USE CALLBACKS
Name Execution

beforeMigrate Before Migrate runs

beforeEachMigrate Before every single migration during Migrate

afterEachMigrate After every single migration during Migrate

afterMigrate After Migrate runs

beforeClean Before Clean runs

afterClean After Clean runs

beforeInfo Before Info runs

afterInfo After Info runs

beforeValidate Before Validate runs

afterValidate After Validate runs

beforeBaseline Before Baseline runs

afterBaseline After Baseline runs

beforeRepair Before Repair runs

afterRepair After Repair runs

CONVERSIONS:
DB2 Z/OS UTILITIES

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

USING DB2 UTILITIES

▸ A z/OS DB2 DBA will want to use DB2 utilities in a number
of cases

▸ LOAD LOG(NO) instead of SQL INSERT

▸ LOAD Replace to clear out a partition

▸ REORG and RUNSTATS

▸ The Crossloader

▸ IMAGECOPY for recoverability

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

DB2 UTILITIES

▸ But … don’t you need JCL to start a DB2 utility?

▸ You cannot make a Rexx exec to start pgm DSNUTILB

▸ Because it runs in storage key 7

▸ Believe me, it has been tried

▸ There are two stored procedures, however:

▸ DSNUTILS (EBCDIC only, deprecated)

▸ DSNUTILU (EBCDIC and Unicode, supported)

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

FIRST TRY IF THE SYSUTILU STORED PROCEDURE WORKS
import java.sql.
class.forName("com.ibm.db2.jcc.DB2Driver")

con = java.sql.Connection -
 java.sql.DriverManager.getConnection(-
 "jdbc:db2://xxx.xxxxx.xxxx.xxxx.xxx/xxxx", "xxxxxx", "xxxxxxxx")

cstmt = con.prepareCall("CALL DSNUTILU(?,?,?,?,?)")

cstmt.setString(1, "JANSR16");
cstmt.setString(2, "NO")
cstmt.setString(3, "TEMPLATE TEMPL01 "-
 " DSN 'XXXXXX.&DB..&SN..P&PA(2,4)..T&TIME.' " -
 " UNIT SYSDA DISP(NEW,CATLG,DELETE) " -
 " REORG TABLESPACE XXXXXX.XXXXX COPYDDN (TEMPL01) " -
 " SHRLEVEL REFERENCE NOSYSREC SORTDEVT SYSDA SORTNUM 64 " -
 " STATISTICS INDEX TABLE SAMPLE 25")
cstmt.setString(4, "")

cstmt.execute()

rs = cstmt.getResultSet()
loop while rs.next()
 say rs.getString(2)
end
cstmt.close()

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

OOREXX

call bsf.loadClass "com.ibm.db2.jcc.DB2Driver"

con = bsf.loadClass("java.sql.DriverManager") ~getConnection(-
 "jdbc:db2://xxx.xxxxx.xxxx.xxxx.xxx/xxxx", "xxxxxx", "xxxxxxxx")

cstmt = con~prepareCall("CALL DSNUTILU(?,?,?,?,?)")

cstmt~setString(1, "JANSR16")
cstmt~setString(2, "NO")
cstmt~setString(3, "TEMPLATE TEMPL01 "-
 " DSN 'XXXXXX.&DB..&SN..P&PA(2,4)..T&TIME.' " -
 " UNIT SYSDA DISP(NEW,CATLG,DELETE) " -
 " REORG TABLESPACE XXXXXX.XXXXX COPYDDN (TEMPL01) " -
 " SHRLEVEL REFERENCE NOSYSREC SORTDEVT SYSDA SORTNUM 64 " -
 " STATISTICS INDEX TABLE SAMPLE 25")
cstmt~setString(4, "")

cstmt~execute

rs = cstmt~getResultSet
loop while rs~next
 say rs~getString(2)
end
cstmt~close

::requires “BSF.CLS"

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

DSNUTILU

▸ Note that DSNUTILU can reside in a package that has been
bound with ENCODING(EBCDIC) or ENCODING(UNICODE)

▸ When a Unicode space (X’20’) is recognised, the output for the
SYSPRINT resultset is Unicode

▸ So when you start the command with a quote, it goes terribly
wrong. Well, not terribly, and not wrong, but you cannot read
the output from the DB2 utility, IDCAMS, DFSORT, and the rest

▸ For debugging this, you need to convert EBCDIC strings to
Unicode with String.getBytes(“Cp1047”) and String(var,”UTF-8”)

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

DSNUTILU

▸ You don’t have DDnames. So use the TEMPLATE utility that
generates and dynamically allocates datasets for you

▸ When using GDG’s, which is possible, you need to have a
preallocated model DCB dataset cataloged - then you can
use it from a TEMPLATE

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

TO A JAVA BASED CONVERSION

▸ When you have seen that DSNUTILU is working, it is time to
have these Stored Procedure calls in your conversion
scenario

▸ Make sure your class inherits from JdbcConversion

▸ Make sure to replace the ‘.’ in the class name with a ‘_’

▸ so V1.2__Reorg.sql becomes class V1_2__Reorg

▸ Put it in a package db.migrations and leave the .class file in
the same directory next to the other, sql-based migration files

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

V1_2__REORG.NRX
package db.migration

import java.sql.
import org.flywaydb.core.

class V1_2__Reorg implements JdbcMigration

 method migrate(con=Connection) signals Exception

 cstmt = con.prepareCall("CALL DSNUTILU(?,?,?,?,?)")

 cstmt.setString(1, "<SQLID>REO");
 cstmt.setString(2, "NO")
 cstmt.setString(3, "TEMPLATE TEMPL01 "-
 " DSN 'A21G089.<SQLID>.&DB..&SN..P&PA(2,4)..T&TIME.' " -
 " UNIT SYSDA DISP(NEW,CATLG,DELETE) " -
 " REORG TABLESPACE <DB2DBNAME>.JANTST COPYDDN (TEMPL01) " -
 " SHRLEVEL REFERENCE NOSYSREC SORTDEVT SYSDA SORTNUM 64 " -
 " STATISTICS INDEX TABLE SAMPLE 25")
 cstmt.setString(4, "")

 cstmt.execute()

 rs = cstmt.getResultSet()
 loop while rs.next()
 say rs.getString(2)
 end
 cstmt.close()

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

OOREXX
return BSFCreateRexxProxy(.V1_2__Reorg~new, ,"db.migration.JdbcMigration")

::requires "BSF.CLS"

::class V1_2__Reorg

::method migrate
 use arg con

 cstmt = con~prepareCall("CALL DSNUTILU(?,?,?,?,?)")

 cstmt~setString(1, "<SQLID>REO")
 cstmt~setString(2, "NO")
 cstmt~setString(3, "TEMPLATE TEMPL01 "-
 " DSN 'A21G089.<SQLID>.&DB..&SN..P&PA(2,4)..T&TIME.' " -
 " UNIT SYSDA DISP(NEW,CATLG,DELETE) " -
 " REORG TABLESPACE <DB2DBNAME>.JANTST COPYDDN (TEMPL01) " -
 " SHRLEVEL REFERENCE NOSYSREC SORTDEVT SYSDA SORTNUM 64 " -
 " STATISTICS INDEX TABLE SAMPLE 25")
 cstmt~setString(4, "")
 cstmt~execute

 rs = cstmt~getResultSet
 loop while rs~next
 say rs~getString(2)
 end
 cstmt~close

AUTO-MIGRATION
ON STARTUP

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

THE EASY CASE

▸ Have your code and migrations in Git, and deploy always the
corresponding migrations (as the highest level) with the
application

▸ Start the application with a

▸ fw.migrate()

▸ It will migrate, but only the first time

▸ Subsequently, it will check and do nothing

▸ Always cater for quick fallback - you never know

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

THE NOT-SO-EASY CASE

▸ In testing and acceptance/certification environments, you
need repeatable conversions, and not always to the
highest available database level

AUTOMATING DB2 Z/OS CHANGES WITH REXX AND FLYWAY

ROLL-BACK AND RECOVERY

▸ On z/OS DB2, DDL updates are atomic within a transaction

▸ Failed migrations are properly rolled back

▸ (this works for DB2, PostgreSQL, Derby, EnterpriseDB and
to a certain extent SQL Server); Oracle surreptitiously
sneaks in commits between DDL statements, invalidating
the transaction concept

THANK YOU
Q?
RVJANSEN@XS4ALL.NL

mailto:rvjansen@xs4all.nl

